Zr | 40 | Цирконий |
|||||||
to кип. (oС) | 4340 | Степ.окис. | +4 (+1 +2 +3) | ||||||
91,224 | to плав.(oС) | 1855 | Плотность | 6500 | |||||
4d25s2 | ОЭО | 1,22 | в зем. коре | 0,0160 % | |||||
В 1789 году немецкий химик член Берлинской Академии наук Мартин Генрих Клапрот, анализируя одну из разновидностей минерала циркона, обнаружил новый элемент, который он назвал цирконием. Благодаря красивой окраске - золотистой, оранжевой, розовой - циркон еще в эпоху Александра Македонского считался драгоценным камнем. Название минерала происходит, по-видимому, от арабского слова «царгун» - золотистый.
Циркон (в литературе встречаются и другие названия этого минерала: гиацинт, яцинт, яргон, джаргон) использовали в старину не только как украшение,, но и как амулет, который «сердце обвеселит, и кручину и неподобные мысли отгоняет, разум и честь умножает». Один из древнерусских эскулапов с профессиональной осведомленностью утверждал в своем труде о медицине, что тот, «кто яхонт* червленный при себе носит, снов страшных и лихих не увидит, скрепит сердце свое и в людях честен будет».
*Яхонтом на Руси называли многие драгоценные камни, в том числе и цейлонский гиацинт.В свободном виде цирконий впервые был выделен в 1824 году шведским химиком Иенсом Берцелиусом. Однако получить чистый цирконий в те времена не представлялось возможным, и физические свойства этого металла долгое время не были изучены. В течение десятков лет цирконий, подобно многим другим ценнейшим металлам, не мог найти себе занятие «по душе», в то время как такие металлы, как железо, медь, свинец, умели показать товар лицом и потому не страдали от отсутствия предложений.
Только в начале нашего века ученым удалось получить свободный от примесей цирконий и тщательно исследовать свойства этого металла. Оказалось, что у него есть постоянный спутник-гафний. Более 130 лет химики не замечали, что гафний присутствует (причем иногда в довольно больших количествах) в цирконии. Объясняется это сходством их химических свойств. Впрочем, по некоторым вопросам у этих элементов имеются серьезные «разногласия», но об этом будет рассказано несколько ниже.
Чистый цирконий - внешне похожий на сталь, но более прочный металл, обладающий высокой пластичностью. Одно из замечательных свойств циркония - его исключительная стойкость ко многим агрессивным средам. По антикоррозийным качествам цирконий превосходит такие стойкие металлы, как ниобий и титан. Нержавеющая сталь теряет в пятипроцентной соляной кислоте при 60°С примерно 2,6 миллиметра в год, титан - около 1 миллиметра, а цирконий - в 1000 раз меньше. Особенно велико сопротивление циркония действию щелочей; в этом отношении ему уступает даже тантал, который по праву снискал себе репутацию выдающегося борца с коррозией. Благодаря своей высокой коррозионной стойкости цирконий нашел применение в столь ответственной области медицины, как нейрохирургия. Из сплавов циркония изготовляют кровоостанавливающие зажимы, хирургический инструмент, а в ряде случаев даже нити для наложения швов при операциях мозга.
После того как ученые заметили, что добавки циркония к стали значительно улучшают многие ее свойства, цирконий был возведен в ранг ценного легирующего элемента. Деятельность циркония на этом поприще многогранна: он повышает твердость и прочность стали, улучшает ее обрабатываемость, прокаливаемость, свариваемость, благоприятно влияет на жидкотекучесть стали, измельчает содержащиеся в ней сульфиды, делает структуру металла мелкозернистой.
При введении циркония в конструкционную сталь заметно возрастает ее окалиностойкость: потери в весе стали марок 40-45, в которой содержится 0,16-0,37% циркония, после трехчасовой выдержки при 820°С примерно в 6-7 раз меньше, чем той же стали, но не легированной цирконием.
Цирконий значительно повышает и коррозионную стойкость конструкционных сталей. Так, после трехмесячного пребывания в воде стали марки 20Г потеря в весе в пересчете на 1 квадратный метр составила 16,3 грамма, в то время как образец той же стали, но с добавкой 0,19% циркония, «похудел» лишь на 7,6 грамма.
Циркониевую сталь можно нагревать до достаточно высоких температур, не опасаясь перегрева. Это позволяет интенсифицировать процессы ковки, штамповки, термообработки, цементации металла.
Плотная мелкозернистая структура и высокая прочность циркониевой стали в сочетании с хорошей жидкотекучестью позволяют изготовлять из нее отливки с более тонкими стенками, чем из обычной стали. Например, из стали 40Х с цирконием были отлиты опытные тонкостенные детали со стенками толщиной 2 миллиметра; толщина стенок этих деталей из стали 40Х, не содержащей циркония, составляла не менее 5-6 миллиметров.
Цирконий оказался хорошим союзником и для многих цветных металлов. Добавка этого элемента к меди резко увеличивает ее прочность, почти не снижая электропроводности. Высокой прочностью и электропроводностью обладает меднокадмиевый сплав с 0,35% циркония. Введение циркония в алюминиевые сплавы заметно повышает их прочность, пластичность, сопротивление коррозии, теплостойкость. Прочность магниевоцинковых сплавов при добавке 0,6-0,7% циркония возрастает примерно вдвое. Коррозионная стойкость сплава титана с 14% циркония в пятипроцентной соляной кислоте при 100°С в 70 раз выше, чем у технически чистого титана. Добавка 5% циркония к молибдену заметно повышает твердость этого металла. Цирконий вводят в марганцовистую латунь, в алюминиевые, никелевые, свинцовые бронзы.
И все же, как ни важна и почетна роль легирующего элемента для сталей и сплавов, она не могла удовлетворить цирконий. Он продолжал искать и нашел свое настоящее призвание. Но прежде чем рассказать об этом, вернемся к его колыбели - в химическую лабораторию Мартина Клапрота.
Дело в том, что в 1789 году Клапрот открыл не только цирконий, но и еще один замечательный элемент, которому суждено было сыграть выдающуюся роль в науке и технике XX века. Этим элементом был уран. Ни сам Клапрот, ни кто-либо другой не могли тогда предвидеть, как сложатся судьбы «братьев» - циркония и урана. Пути их разошлись надолго: в течение полутора веков ничто не связывало эти элементы. И только в наши дни после долгой разлуки они встретились вновь. Сначала об этом знали лишь очень немногие ученые и инженеры, работавшие в области ядерной энергетики, куда, как известно, «посторонним вход воспрещен». Встреча состоялась в атомных реакторах, где уран использовали как ядерное топливо, а цирконий должен был служить оболочкой для урановых стержней. Впрочем, точности ради, отметим, что еще за несколько лет до этого американские ученые попробовали применять цирконий в качестве материала для ядерного реактора, который был установлен на первой атомной подводной лодке США «Наутилус». Однако вскоре выяснилось, что из циркония выгоднее делать не стационарные детали активной зоны реактора, а оболочки топливных элементов. Вот тогда-то уран и попал в «объятия» циркония.
Выбор на цирконий пал не случайно: физикам было известно, что он в отличие от многих других металлов, легко пропускает нейтроны («нейтронная прозрачность»), а именно таким свойством должен обладать материал для корпусов, урановых стержней. Правда, некоторые металлы - магний, алюминий, олово - в этом отношении сходны с цирконием, но они легкоплавки и нежаропрочны. Цирконию же, который плавится лишь при 1850°С, тепловые нагрузки ядерной энергетики вполне по плечу.
Однако и у циркония есть кое-какие «грешки», которые могли бы помешать ему работать в этой ответственной области. Дело в том, что «прозрачен» для ней тронов только цирконий высокой степени чистоты. Вот тут-то и приходится снова вспомнить о гафнии - металле, который по химическим свойствам может быть назван «близнецом» циркония. Но «взгляды» на нейтроны у них оказались проти воположными: гафний с жадностью поглощает нейтроны (в 500-600 раз сильнее, чем цирконий). Более того, примеси гафния даже в гомеопатических дозах способны испортить «кровь» цирконию и лишить его нейтронной прозрачности. Технические условия на цирконий так называемой «реакторной чистоты» допускают присутствие в нем не больше 0,02% гафния. Но и такие «крохи» довольно существенно - в шесть с половиной раз - снижают нейтронную прозрачность циркония.
Поскольку в природе эти металлы обычно находятся вместе, получить полностью свободный от гафния цирконий-задача колоссальной трудности. И тем не менее химикам и металлургам пришлось взяться за эту проблему, так как атомная промышленность крайне нуждалась в конструкционном материале.
Когда задача была решена, на повестку дня встала другая: требовалось добиться того, чтобы при изготовлении конструкций из чистейшего циркония в процессе сварки в него не попадали «чужеродные атомы», которые могли бы оказаться непреодолимой преградой на пути нейтронов и тем самым свести на нет все достоинства этого металла. К тому же сварку нужно было проводить таким образом, чтобы не нарушить однородность металла: сварочный шов должен обладать теми же свойствами, что и свариваемый материал. На помощь был призван электронный луч. Чистота и точность электроннолучевой сварки позволили решить и эту проблему - цирконий стал «одеждой» урановых стержней.
Именно тогда и произошел резкий скачок в производстве этого металла: только за десятилетие - с 1949 по 1959 год - мировое производство циркония возросло в 1000 раз! В ход пошли большие скопления цирконовых песков, которые раньше служили отходами при добыче других ископаемых. Так, в Калифорнии, при добыче золота драгами в руслах древних рек вместе с золотом на промывку поднимали значительное количество циркона, но из-за отсутствия спроса его сбрасывали в отвалы. На побережье в штате Орегон (США) в годы войны добывали хромит и попутно получали некоторое количество циркона, который не интересовал тогда промышленность и потому не вывозила с места добычи. Когда же вскоре после войны начался циркониевый бум, все эти отвалы оказались «лакомым кусочком».
Сейчас крупные месторождения этого ценного элемента разрабатывают в США, Австралии, Бразилии, Индии, странах Западной Африки. Отличной рудой циркония часто служат прибрежные пески. В Австралии, например, циркон овые россыпи простираются почти на 150 километров вдоль океанского побережья. Значительными запасами циркониевого сырья располагает и Россия.
Потребность в цирконии растет из года в год, так как этот материал приобретает все новые «специальности». Его свойство в нагретом состоянии жадно поглощать газы используют в электровакуумной технике, в радиотехнике. Из смеси порошка металлического циркония с горючими соединениями изготовляют осветительные ракеты, дающие большое количество света. Циркониевая фольга при горении дает в полтора раза больше света, чем алюминиевая, потребляя при этом такое же количество кислорода. «Вспышки» с циркониевым заполнением удобны тем, что занимают совсем мало места - они могут быть величиной с наперсток. К циркониевым сплавам все внимательнее присматриваются конструкторы ракетной техники: вполне возможно, что из жаропрочных сплавов этого элемента будут выполнены передние кромки космических кораблей, совершающих регулярные рейсы в просторах вселенной.
Дождевые плащи обязаны своей влагонепроницаемостью солям циркония, которые входят в состав особой эмульсии для пропитки тканей. Соли циркония применяют также для изготовления цветных типографских красок, специальных лаков, пластических масс. В качестве катализатора соединения циркония используют при производстве высокооктанового моторного топлива. Сернокислые соединения этого элемента славятся отличными дубильными свойствами.
Весьма интересное применение нашел тетрахлорид циркония. Электропроводность пластинки из этого вещества меняется в зависимости от давления, которое на нее действует. Это свойство и было использовано в конструкции универсального манометра -прибора для измерения давлений. При малейшем изменении давления изменяется и сила тока в цепи прибора, шкала которого отградуирована в единицах давления. Эти манометры очень чувствительны: с их помощью можно определять давление от стотысячных долей атмосферы до тысяч атмосфер.
Для многих радиотехнических приборов - ультразвуковых генераторов, стабилизаторов частоты и других - нужны пьезокристаллы. В некоторых случаях им приходится работать при повышенных температурах. С этой точки зрения несомненный интерес представляют кристаллы цирконата свинца, которые практически не меняют своих пьезоэлектрических свойств до 300°С.
Рассказывая о цирконии, нельзя не упомянуть о его двуокиси - одном из самых тугоплавких веществ природы: температура плавления ее - около 2700°С. Двуокись циркония широко используют при получении высокоогнеупорных изделий, жаростойких эмалей, тугоплавких стекол. Еще более тугоплавкий материал - борид этого металла. Из него изготовляют чехлы для термопар, которые могут находиться в расплавленном чугуне непрерывно в течение 10-15 часов, а в жидкой стали 2-3 часа (кварцевые чехлы выдерживают лишь одно-два погружения не более чем на 20-25 секунд).
Двуокись циркония обладает интересным свойством: сильно нагретая, она излучает свет настолько интенсивно, что может быть использована в осветительной технике. Это свойство подметил еще в конце прошлого века известный немецкий физик Вальтер Герман Нернст. В сконструированной им лампе (вошедшей в историю техники как «лампа Нернста») стержни накаливания были изготовлены из двуокиси циркония. В лабораторных опытах это вещество и сейчас иногда применяют в качестве источника света.
Французские ученые используют двуокись циркония как исходный материал для получения этого металла с помощью солнечной энергии. В Монлуи - крепости, построенной в XVII веке в Восточных Пиренеях на высоте 1500 метров над уровнем моря, находится солнечная печь, спроектированная и эксплуатируемая группой исследователей под руководством профессора Феликса Тромба. На состоявшемся в Монлуи симпозиуме по использованию солнечной энергии участникам было продемонстрировано действие этой печи.
«Медленно, почти незаметно, специальная платформа поднимает горстку белого порошка к фокусу большого параболического зеркала. Вот платформа достигла фокуса и перед глазами ученых и инженеров вспыхнуло ослепительно яркое белое пламя.
Белый порошок - это окись циркония... Помещенный в фокус параболического зеркала, где температура концентрированных солнечных лучей достигает 3000°С, порошок расплавился. Возникшую при этом вспышку можно наблюдать только через темные стекла. И маленькая кучка раскаленного вещества, лежащего на платформе, напоминала извергающийся вулкан какой-то далекой геологической эры».
Так описывает процесс получения «солнечного» циркония один из участников симпозиума. Специальный солнечный отражатель, состоящий из множества отдельных зеркал и достигающий 12 метров в поперечнике, с помощью фотоэлементов автоматически вращается вслед за Солнцем. Отраженные им лучи отбрасываются на большое параболическое зеркало диаметром 10 метров. Тепловая мощность этого зеркала, которое концентрирует солнечные лучи в жерле печи, эквивалентна 75 киловаттам.
В десяти километрах от Монлуи, в маленькой горной деревушке Одейо, сооружена еще одна солнечная печь - крупнейшая в мире. Тех, кто приезжает в «столицу солнца» (так местные жители с гордостью стали именовать Одейо), встречает необычный пейзаж, похожий на декорации для съемок научно-фантастического фильма. Рядом со старинной остроконечной церковкой возвышается ультрасовременное многоэтажное здание - Лаборатория солнечной энергии. Весь северный фасад его представляет собой огромное параболическое зеркало, диаметр которого равен примерно 50 метрам. На противоположном склоне горы рядами размещены десятки зеркал довольно внушительных размеров - гелиостаты. Солнечные лучи, пойманные гелиостатами, направляются сначала на параболическое зеркало, а оттуда, собранные в пучок, попадают в плавильную печь, где создается температура 3500°С.
Печь в Одейо может производить почти 2,5 тонны циркония в день (дневная производительность печи в Монлуи составляет лишь 60 килограммов). Тепло, развиваемое солнечным «зайчиком» в жерле печи, эквивалентно 1000 киловаттам электрической энергии.
Главное достоинство солнечных печей заключается в том, что в процессе плавки в металл не попадают ненужные примеси - им неоткуда взяться. Поэтому получаемые здесь металлы и сплавы характеризуются высокой чистотой и пользуются постоянным спросом. Есть и еще один весомый аргумент в пользу такого способа плавки: с Солнцем не нужно расплачиваться за используемую энергию - щедрое светило безвозмездно отдает ее людям.
В заключение остановимся на одном недоразумении. Земная кора содержит больше циркония, чем, например, меди, никеля, свинца или цинка. Тем не менее, в отличие от этих металлов, цирконий называют редким. Когда-то это объяснялось большой рассеянностью циркониевых руд, трудностью извлечения циркония, да еще и тем, что в технике этот металл был действительно «редким гостем». Теперь же, когда производство циркония с каждым годом стремительно растет и он находит все новые и новые области применения, термин «редкий» для него уже теряет свой смысл, а вскоре, видимо, и совсем отомрет. Но прошлое есть прошлое, и на вопрос о происхождении цирконий вправе с гордостью отвечать: «Из редких»...