Kr 36

Криптон

to кип. (oС) 153,35 Степ.окис. +2

83,80

to плав.(oС) -157,37 Плотность 3,745 г/л
4s24p6 ОЭО 2,94 в зем. коре 0,000114 % (в атмосфере)

Впервые криптоном был назван газ, выделенный Уильямом Рамзаем из минерала клевеита. Но очень скоро пришлось это имя снять и элемент «закрыть». Английский спектроскопист Уильям Крукс установил, что газ не что иное, как уже известный по солнечному спектру гелий. Спустя три года, в 1898 году, название «криптон» вновь появилось, его присвоили новому элементу, новому инертному газу.

Открыл его опять же Рамзай, и почти случайно — «шел в дверь, попал в другую». Намереваясь выделить гелий из жидкого воздуха, ученый вначале пошел было по ложному следу: он пытался обнаружить гелий в высококипящих фракциях воздуха. Разумеется, гелия, самого низкокипящего из всех газов, там не могло быть, и Рамзай его не нашел. Зато он увидел в спектре тяжелых фракций желтую и зеленую линии в тех местах, где подобных следов не оставлял ни один из известных элементов.

Так был открыт криптон, элемент, имя которого в переводе с греческого значит «скрытный». Название несколько неожиданное для элемента, который сам шел в руки исследователя.

 

Родословная криптона

Известно, что гелий, радон, почти весь аргон и, вероятно, неон нашей планеты имеют радиогенное происхождение, то есть они — продукты радиоактивного распада. А как обстоит дело с криптоном?

Среди известных природных ядерных процессов, порождающих криптон, наибольший интерес представляет самопроизвольное деление ядер урана и тория.

В 1939 году Г. Н. Флеров и К. А. Петржак установили, что в природе (очень редко) происходит самопроизвольное расщепление ядер урана-238 на два осколка примерно равной массы. Еще реже таким же образом делятся ядра 232Тh и 235U. Осколки — это атомы изотопов средней части периодической системы элементов. Будучи неустойчивыми («перегруженными» нейтронами), эти осколки проходят по цепи последовательных бета-распадов. Среди конечных продуктов распада есть и стабильные тяжелые изотопы криптона.

Подcчеты, однако, показывают, что радиоактивный распад (включая деление урана-235 медленными нейтронами) не главный «изготовитель» криптона. За время существования Земли (если считать его равным 5 миллиардам лет) эти процессы смогли выработать не более двух-трех десятых процента существующего на нашей планете элемента № 36. Откуда в таком случае основная его масса?

Сегодня на этот вопрос даются два обоснованных, но разных по смыслу ответа.

Часть ученых считает, что земной криптон возник в недрах планеты. Прародителями криптона были трансурановые элементы, некогда существовавшие на Земле, но теперь уже «вымершие». Следы их существования усматривают в том, что в земной коре есть элементы-долгожители нептуниевого радиоактивного ряда (ныне целиком искусственно воссозданного). Другой подобный след — микроколичества плутония и нептуния в земных минералах, хотя они могут быть и продуктами облучения урана космическими нейтронами.

В пользу этой гипотезы говорит тот факт, что искусственно полученные актиноиды (не все, но многие) — активные «генераторы» криптона. Их ядра самопроизвольно делятся намного чаще, чем ядра атомов урана. Сравните периоды полураспада по спонтанному делению: 8,04 •1015 лет — для урана-238 и всего 2000 лет — для калифорния-246. А для фермия и менделевия соответствующие периоды полураспада измеряются всего лишь часами.

Иного мнения придерживается другая группа. На их взгляд, земной криптон (как и ксенон) пришел на Землю из Вселенной, в процессе зарождения Земли. Он присутствовал еще в протопланетном облаке, его сорбировала первичная земная материя, откуда он потом, при разогреве планеты, выделился в атмосферу.

Это мнение тоже опирается на факты. В его пользу говорит, в частности, то, что криптон — газ тяжелый, малолетучий и относительно легко конденсирующийся (в отличие от иных компонентов первичной атмосферы) вряд ли смог бы оставить Землю на первых фазах ее формирования.

Кто же прав? Скорее всего, правы обе стороны: криптон нашей планеты, вероятно, представляет собою смесь газов как космического, так и земного происхождения. По данным исследований последних лет, земного намного больше.

Что же представляет собой эта смесь?

Глазами физика и химика

Газообразный криптон в 2,87 раза тяжелее воздуха, а жидкий — в 2,14 раза тяжелее воды. Криптон превращается в жидкость при —153,2° С, а уже при —157,1° С он отвердевает. Заметим попутно, что малые температурные интервалы между жидким и твердым состояниями характерны для всех благородных газов. Это свидетельствует о слабости сил межмолекулярного взаимодействия, что вполне естественно: у этих атомов «замкнутые», целиком заполненные электронные оболочки. Молекула криптона одноатомна.

 

Криптон — достаточно редкий и рассеянный газ. На Земле его больше всего в атмосфере—3 • 10-40% (по весу). Содержание криптона в атмосфере очень медленно (даже в масштабах геологических эпох) нарастает: криптон «выдыхают» некоторые минералы.

Природный криптон состоит из шести стабильных изотопов: 78Kr, 80Kr, 82Kr, 83Kr, 84Kr и 86Kr. И все они есть в горных породах, природных водах и атмосфере. Обильнее прочих представлен 84Kr, на его долю приходится 56,9% атмосферного криптона.

В ядерных реакциях искусственно получены 19 радиоактивных изотопов криптона — с массовыми числами от 76 до 97. Некоторые из этих изотопов нашли применение как радиоактивные индикаторы и генераторы излучения. Особо важным оказался криптон-85 — почти чистый бета-излучатель с периодом полураспада 10,3 года.

Спектр криптона изобилует линиями во всем видимом диапазоне, особенно в коротковолновой области. Самые яркие линии расположены между 4807 и 5870 ангстрем, оттого в обычных условиях криптон дает зеленовато-голубое свечение.

Благодаря хорошей растворимости в жидкостях организма криптон при парциальном давлении 3,5 атм уже оказывает наркотическое действие на человека.

А теперь о химии криптона.

В атоме криптона 36 электронов, распределенных на четырех энергетических уровнях (оболочках). Это обстоятельство в физическом и отчасти химическом смысле приближает криптон к обычным, «нормальным» газам. Почему?

В атомах тяжелых элементов нулевой группы внешние электронные оболочки замкнутые. Но будучи сравнительно отдаленными от ядра, оболочки получают некоторую автономность. Чем тяжелее атомы инертного газа, тем больше их способность объединяться в «агрегаты» с другими атомами. Более 30 лет назад были открыты первые соединения тяжелых инертных газов. Криптон, ксенон и радон вступили в реакции с химически активными фтором и кислородом.

Химия «инертных» газов (теперь без кавычек не обойтись) — новая область науки. Но возникла она не на голом месте. Еще в первой четверти XX века ученые наблюдали образование в электрическом разряде ионизированных молекул инертных газов и как будто бы соединений этих газов с другими элементами. Вне разряда эти образования быстро распадались, и первые сообщения о соединениях инертных газов казались малообоснованными.

Позже стали известны кристаллические клатратные соединения криптона с Н2О, H2S, SO2 галогеноводородами, фенолами, толуолом и другими органическими веществами. Они устойчивы даже при комнатной температуре под давлением 2—4 атм. Но еще в 40-х годах советский ученый Б. А. Никитин показал, что в клатратных соединениях связь молекулярная, в них валентные электроны не взаимодействуют.

В 1933 году Лайнус Полинг, позже дважды лауреат Нобелевской премии, развивая представление о валентных связях, предсказал возможность существования фторидов криптона и ксенона. Но лишь в 1962 году было получено первое такое соединение — гекса-фтороплатинат ксенона. Вслед за тем были синтезированы фториды и окислы криптона, ксенона, радона и многочисленные их производные.

Разумеется, соединения криптона и других благородных газов получить не легко. Так, кристаллический KrF2 был получен в результате воздействия тихого электрического разряда на смесь из фтора, криптона и аргона в молярном отношении 1:70:200. Условия реакции: давление — 20 мм ртутного столба, температура — минус 183° С. В сходных условиях образуется и тетрафторид криптона KrF4. При комнатной температуре оба фторида разлагаются, причем дифторид — со взрывом. Но при температуре сухого льда (—78° С) и ниже эти бесцветные кристаллы довольно устойчивы.

А по химическим свойствам это весьма активные окислители, вытесняющие хлор из соляной кислоты и кислород из воды. Они реагируют с органическими соединениями, замещая в них водород на фтор. Бумага, этиловый спирт и многие другие соединения от соприкосновения с KrF2 и KrF4 воспламеняются. Как компактные и достаточно удобные в обращении фторирующие агенты фториды криптона уже приобрели прикладное значение.

Известны соединения криптона с кислородом, а также нестабильная криптоновая кислота KrО3 • Н2О и ее бариевая соль, которой приписывают формулу ВаKrО4. Последние соединения мало изучены. Характерно, что кислородные соединения криптона пока удается получить только через фториды, то есть сначала получают соединения благородного газа с фтором, а уже потом кислородное соединение.

 

Извлечение из воздуха

Криптон, получают из воздуха. Но чтобы получить литр элемента № 36, приходится переработать более миллиона литров воздуха. Тем не менее современные масштабы производства кислорода позволяют попутно извлекать довольно значительные и с каждым годом возрастающие количества криптона.

Как наименее летучие компоненты воздуха, криптон и ксенон скапливаются в самой «теплой» части воздухоразделительного аппарата вместе с жидким кислородом. Из него-то и выделяют элемент № 36.

Ожиженную кислородную фракцию направляют в ректификационную колонну, нижняя часть, или «пристройка», которой (конденсатор) охлаждается жидким азотом. Здесь получается «бедный» криптоновый концентрат, содержащий 0,1—0,2% Kr; этот «бедняк» в 400 раз богаче криптоном, чем исходный кислород.

Прежде чем продолжить ректификацию, бедный концентрат очищают от метана, ацетилена и прочих углеводородов. Такая операция необходима, чтобы исключить опасность взрыва на последующих стадиях отделения криптона. Микропримеси углеводородов в воздухе есть всегда. Причины их появления — испарение нефтепродуктов, утечка природного газа, бактериальный распад органических остатков и, наконец, промышленные выбросы.

В контактных аппаратах при 700° С в присутствии катализатора — СuО или А12O3 — большая часть углеводородов выгорает. Очищенную смесь кислорода и криптона снова превращают в жидкость и отправляют во вторую ректификационную колонну. Здесь получают уже богатый концентрат — в нем 10—20% криптона. Но параллельно опять возрастает содержание углеводородов. И опять смесь переводится в газообразное состояние, и опять следует выжигание углеводородов. Затем весь этот цикл повторяют еще раз.

Окончательная криптоноксеноновая смесь содержит 90—98% Kr + Хе. Для тонкой очистки этой смеси остатки кислорода связывают водородом в воду, а примесь азота удаляют, пропуская смесь над стружками магния,— азот реагирует с ним, образуя нитрид.

Последний этап — разделение криптона и ксенона. Жидкую смесь опять превращают в газ и направляют в адсорбер с активированным углем. Здесь при температуре –65 — –75° С ксенон и некоторое количество криптона поглощаются углем, а выходящий из адсорбера газ содержит по меньшей мере 97% криптона.

«Светить всегда»

Производство электроламп — главный потребитель криптона. Небольшие грибовидные лампы с криптоновым (или криптоноксеноновым) наполнением постепенно теснят лампы аргоноазотного наполнения, которые в свое время вытеснили пустотные и азотонаполненные лампы.

Достоинства криптона в лампах накаливания очевидны: он в 2,1 раза тяжелее аргона и почти вдвое хуже проводит тепло. В более плотном газе замедляется распыление раскаленной вольфрамовой нити — это увеличивает стабильность светового потока. Малая же теплопроводность криптона способствует увеличению доли видимого излучения в общем потоке лучистой энергии. Криптоновое наполнение в сравнении с аргоновым повышает мощность ламп на 5—15% и сроки службы на 40— 170 %. Вдобавок наполовину уменьшается объем колбы.

Криптоном заполняют и газосветные трубки низкого давления — преимущественно рекламные. Используют этот газ и в конструкциях ламп высокого давления. Яркий белый свет (с розоватым оттенком) таких ламп нужен в лакокрасочной и текстильной промышленности, при освещении сцен телевизионных студий, при киносъемках. Некоторые из таких ламп служат мощными источниками инфракрасного излучения.

Главное назначение криптона сегодня — «светить-всегда, светить везде до дней последних донца, светить — и никаких гвоздей . . .» Впрочем, не исключено, что будущие соединения криптона и в производстве гвоздей окажутся не лишними.

Назад

Hosted by uCoz