Co 27

Кобальт

to кип. (oС) 2960 Степ.окис. +2 +3 (+1 +4 +5)
58,9332 to плав.(oС) 1494 Плотность 8840
3d74s2 ОЭО 1,70 в зем. коре 0,0023 %

Рассказывают, будто бы известный врач и химик XVI века Парацельс любил показывать фокус, который неизменно пользовался успехом у аудитории. Ученый демонстрировал картину, где был изображен зимний пейзаж - деревья и пригорки, покрытые снегом. Дав зрителям вдоволь налюбоваться полотном, Парацельс на глазах у публики превращал зиму в лето: деревья одевались листвой, а на пригорках появлялась нежно-зеленая трава.

Чудо? Но ведь чудес на свете не бывает. Действительно, в роли волшебника в этом опыте выступала химия. При обычной температуре раствор хлористого кобальта, к которому примешано некоторое количество хлористого никеля или железа, бесцветен, но если им что-либо написать, дать просохнуть, а затем хотя бы слабо подогреть, то он приобретает красивую зеленую окраску. Такими растворами и пользовался Парацельс, создавая свой чудо-пейзаж. В нужный момент ученый незаметно для присутствующих зажигал находившуюся за картиной свечу и на полотне, точно в сказке, происходила изумлявшая публику смена времен года.

Правда, сам Парацельс еще не мог в то время знать точный химический состав своих красок: ведь тогда ни кобальт, ни никель еще не были известны науке. Но использование соединений кобальта в качестве красителей насчитывало к этому моменту уже не одно столетие. Еще пять тысяч лет назад синюю кобальтовую краску применяли в керамическом и стекольном производстве. В Китае, например, в те далекие времена кобальт использовали в производстве всемирно известного голубого фарфора. Древние египтяне синей глазурью, содержащей кобальт, покрывали глиняные горшки. В гробнице фараона Тутанхамона археологи нашли стекла, окрашенные в синий цвет солями этого элемента. Такие же стекла удалось обнаружить и при раскопках на месте древней Ассирии и Вавилона.

Однако в начале нашей эры секрет кобальтовых красок, видимо, был утерян, так как в синих стеклах, изготовленных в этот период александрийскими, византийскими, римскими и другими мастерами, кобальт уже не содержался, а синяя окраска, которая достигалась введением меди, явно уступала прежней.

“Разлука” стекла с кобальтом затянулась: лишь в средние века венецианские мастера стекольных дел начали выпускать чудесные синие стекла, которые быстро завоевали популярность во многих странах. Своим успехом стекла были обязаны все тому же кобальту.

Рецепт изготовления своей неповторимой по красоте продукции венецианцы держали в строжайшем секрете. Чтобы свести к минимуму возможность утечки информации правительство Венеции перевело в XIII веке все стекольные фабрики на небольшой остров Мурано, куда посторонним “вход” был воспрещен строго-настрого. Да и покинуть остров без разрешения властей не дозволялось ни одному из специалистов по варке цветного стекла. И все же подмастерье Джиорджио Белерино сумел каким-то путем сбежать оттуда. Он добрался до Германии и открыл в одном из городов свою стекольную мастерскую. Но просуществовала она недолго: однажды в ней “возник” пожар и она сгорела дотла, а беглеца-владельца нашли заколотым кинжалом.

Сохранившиеся документы XVII века свидетельствуют, что на Руси большим спросом пользовалась дорогая, но очень стойкая и сочная кобальтовая краска “голубец”. Ею были расписаны стены Грановитой и Оружейной палат, Архангельского и Успенского соборов и других замечательных сооружений того времени.

Дороговизна кобальтовых красок объяснялась очень малой добычей руд этого элемента. Точнее, кобальтовых руд промышленность попросту не знала, так как крупных Скоплений этого металла в природе не существует, а он лишь сопутствует в сравнительно небольших концентрациях мышьяку, меди, висмуту и некоторым другим элементам. Именно поэтому горняки средневековой Саксонии долго и не подозревали о том, что недра их гор содержат никому не ведомый тогда еще металл.

Но время от времени им попадалась довольно странная руда, которая по внешним признакам была серебряной, однако все попытки получить из нее серебро оказывались неудачными. К тому же в процессе обжига из руды выделялись ядовитые газы, доставлявшие горнякам немало неприятностей. В конце концов саксонцы научились отличать настоящую серебряную руду от ее коварной копии, которую решено было назвать “кобольдом” по имени “поселившегося” в ней горного духа.

В 1735 году шведский химик Г. Брандт, проанализировавший некоторые саксонские руды, в том числе и печально известный “кобольд”, защитил диссертацию, в которой доказал, что в рудах присутствует неизвестный в то время металл. Новый металл Брандт назвал, как и руду, “кобольдом”. Если бы это открытие было сделано в наши дни, телетайпы тотчас же разнесли бы весть о нем по свету, но XVIII век не располагал такими могучими и оперативными средствами информации. Долгие годы о диссертации шведского химика знали лишь немногие. Даже спустя 30 лет ученый Леман, например, считал кобольд смесью меди, железа и какой-то “особой земли”.

Только в конце XVIII столетия трудами ряда ученых, в том числе русского химика Г. И. Гесса, открытие Брандта было подтверждено и узаконено, а за найденным им металлом закрепилось то название, которым мы пользуемся до сих пор, - кобальт.

К этому времени уже был открыт и ближайший химический родственник кобальта-никель. Эти металлы и в природе частенько оказывались рядом, и не случайно перед учеными встал вопрос: как разделять их, чтобы получать и тот, и другой в чистом виде?

Ответ на этот вопрос был найден довольно неожиданно. Сложнейшую химическую задачу удалось разрешить... ветеринарному врачу Шарлю Аскину. Дело обстояло так. Все свободное время ветеринар посвящал своему хобби- металлургии. В 1834 году он заинтересовался никелем и его сплавами. Аскин предпринял попытку извлечь никель из руды. Но к несчастью (впрочем, справедливее сказать, к счастью), эта руда содержала к тому же и кобальт. Что же предпринять? Аскин обратился за помощью к владельцу местного химического завода Бенсону. Как выяснилось, тот как раз нуждался в кобальте, который он применял в производстве керамики. Однако и Бенсону не были известны способы разделения этих металлов. После некоторых раздумий они решили воспользоваться для достижения своей цели хлорной известью, точно рассчитали, сколько потребуется ее для работы, и каждый из них приступил к делу.

Бенсон, у которого было достаточно хлорной извести, отмерил нужное ее количество и попытался обработать ею руду, но ничего не добился: из раствора в осадок выпали окиси как того, так и другого металла.

Аскин же, готовясь начать опыты, обнаружил, что располагает лишь половиной расчетного количества хлорной извести. “Вот уж не везет, так не везет”,-должно быть, подумал он, однако все же не стал откладывать эксперимент. Но недаром говорится, что нет худа без добра. К удивлению и радости Аскина, опыт, не суливший ему, казалось бы, никаких успехов, дал желанный результат: кобальт в виде окиси выпал в осадок, а никель, которому не хватило хлорной извести, почти весь остался в растворе. Позднее этот способ был несколько усовершенствован и по сей день широко используется в промышленности для разделения родственных металлов.

До начала XX века сфера деятельности кобальта была весьма ограничена. Металлурги, например, которые сегодня с почтением относятся к кобальту, тогда, имели смутное представление о его свойствах. В книге “Металлургия цветных металлов”, вышедшей в 1912 году, ее автор Е. Про утверждал: “...до настоящего времени металлический кобальт с точки зрения потребления не представляет интереса... Были попытки ввести кобальт в железо и приготовить специальные стали, но последние не нашли еще никакого применения”.

Уважаемый автор заблуждался. Еще за пять лет до появления его книги металлургическая фирма Хейнсса создала необычные сплавы, обладавшие колоссальной твердостью и предназначавшиеся для металлообрабатывающей промышленности. Один из лучших стеллитов - так были названы новые сплавы (от лова “стелла” - звезда) - содержал более 50% кобальта. В дальнейшем производство твердых, сплавов неуклонно росло, и кобальт играл в них далеко не последнюю роль.

Советскими учеными и инженерами разработан сверхтвердый сплав “победит”, превосходящий по своим качествам аналогичные зарубежные сплавы. В состав победита, наряду с карбидом вольфрама, входит кобальт.

В 1917 году японские ученые Хонда и Така-ти получили патент на созданную ими сталь, содержавшую от 20 до 60% кобальта и характеризовавшуюся высокими магнитными свойствами. Нужда в такой стали, за которой закрепилось название японской, была огромная. Конец XIX и начало XX веков ознаменовались буквально вторжением магнитов в промышленность, чем и был обусловлен голод на магнитные материалы.

Из трех основных ферромагнитных металлов-железа, никеля и кобальта-последний обладает наиболее высокой точкой Кюри, т. е. той температурой, при которой металл утрачивает свойство быть магнитом. Если для никеля точка Кюри составляет всего 358°С, для железа 770°С, то для кобальта она достигает 1130°С. И так как магнитам приходится трудиться в самых разнообразных условиях, в том числе и при весьма высоких температурах, кобальту суждено было стать важнейшим компонентом магнитных сталей.

Едва успев появиться на свет, кобальтовая сталь привлекла к себе внимание военных чинов и промышленников, смекнувших, что ее особые свойства можно с успехом использовать в целях, отнюдь не безобидных. Уже в годы гражданской войны нашим морякам и красноармейцам, сражавшимся на Севере с английскими интервентами, довелось познакомиться с необычными минами, на которых, даже не прикоснувшись к ним, подрывались тральщики Северодвинской флотилии. Когда водолазы выудили и обезвредили одну из таких коварных “игрушек”, оказалось, что она магнитная, а принцип ее действия заключался в следующем: как только стальяии корпус приближавшегося к мине корабля оказывался в зоне силовых линий ее магнитного поля, срабатывал механизм взрывателя и корабль шел ко дну.

Накануне второй мировой войны в фашистской Германии производство кобальтовых сталей, служивших материалом для изготовления магнитных мин, заметно возросло. Как утверждала геббельсовская пропаганда, немецкие мины по точности, чувствительности и быстроте реакции “превосходят нервную систему многих высших существ, созданных творцом”. И действительно, когда немцам удалось заминировать с воздуха побережье Англии, устья Темзы и других важнейших рек, магнитные мины нанесли большой урон английскому флоту. Но на всякий яд находится противоядие. Уже примерно через две недели после вероломного нападения гитлеровской армии на Советский Союз военный инженер 3-го ранга М. И. Иванов в районе Очакова разминировал первую немецкую магнитную мину.

К периоду войны относится и случай, который произошел на одном из уральских рудников. В старых отвалах обогатительной фабрики, перерабатывающей в течение многих лет медную руду, был обнаружен кобальт, о чем до этого никто и не подозревал. В короткий срок была разработана технология извлечения кобальта, и вскоре военная промышленность уже получила ценнейший металл, добытый из “пустой” породы.

В годы войны кобальт начал принимать участие в создании жаропрочных сталей и сплавов, которые идут на изготовление деталей авиационных двигателей, ракет, паровых котлов высокого давления, лопаток турбокомпрессоров и газовых турбин. К таким сплавам относится, например, “виталлиум”, - содержащий до 65% кобальта. Однако дороговизна и дефицитность кобальта являются препятствием для еще более широкого использования его в этой области.

В то же время есть такие сферы, где кобальт с успехом заменяет еще более дорогой металл - платину, годовая добыча которой легко поместится в кузове грузовика. В гальванотехнике распространены нерастворимые аноды, которые не должны реагировать с содержимым гальванической ванны. Очень подходящий для этих целей материал - платина, но платиновые аноды обходятся “в копеечку”. Замена платины более дешевыми металлами давно волновала умы ученых. В результате, кропотливых поисков удалось разработать композицию сплава, не только не уступающего платине, но и превосходящего ее по способности противостоять крепким кислотам. В состав такого сплава входит до 75% кобальта.

В ряде случаев кобальт выступает в союзе с платиной. Так, английская фирма “Мулард” создала магнитный сплав этих металлов-“плати-накс-2”, который к тому же обладает высокими антикоррозийными свойствами, легко поддается механической обработке. Из него изготовляют миниатюрные магнитные детали для электрических часов, слуховых аппаратов, датчиков различного назначения.

Кобальтохромовый сплав оказался прекрасным материалом для каркасов зубных протезов: он вдвое прочнее золота, обычно используемого для этой цели, и, как легко догадаться, значительно дешевле.

До сих пор мы рассказывали об обычном кобальте, но с тех пор, как в 1934 году известные французские ученые Фредерик и Ирен Жолио-Кюри открыли явление, искусственной радиоактивности, наука и техника стали проявлять большой интерес к радиоактивным изотопам различных элементов, в том числе и кобальта. Из 12 радиоактивных изотопов этого металла

наиболее широкое практическое применение получил кобальт-60.

Его лучи обладают высокой проникающей способностью. По мощности излучения 17 граммов радиоактивного кобальта эквивалентны 1 килограмму радия - самого мощного природного источника радиации. Вот почему при получении, хранении и транспортировке этого изотопа, как, впрочем, и других, тщательно соблюдают строжайшие правила техники безопасности, принимают все необходимые меры, чтобы надежно оградить людей от смертоносных лучей.

После того как в ядерном реакторе обычный металлический кобальт превращается в радиоактивный, его, подобно сказочному джину, “заточают” в специальные массивные контейнеры, по виду напоминающие молочные бидоны. В этих контейнерах, окруженный слоем свинца, кобальт-60 переезжает на специальных машинах к месту будущей работы. Ну, а вдруг автомобиль попадет в аварию - контейнер-“бидон” может разбиться, и тогда упрятанная в нем ампула с кобальтом будет угрожать жизни людей? Нет, этого не произойдет. Разумеется, от дорожной аварии не застрахован ни один автомобиль, но даже, если она случится, “бидон” останется целым и невредимым. Ведь прежде, чем стать хранилищем для радиоактивного изотопа, контейнеры проходят серьезные испытания. Их бросают с пятиметровой высоты на бетонные плиты, помещают в термокамеры, подвергают различным испытаниям, и лишь после этого они обретают право принять в свой “чрев” маленькую ампулу с тем или другим радиоактивным веществом. Все эти меры предосторожности делают работу людей, связанных с источниками ядерного излучения, практически безопасной.

У радиоактивного кобальта много “профессий”. Все более широкое применение в промышленности находит, например, гамма-дефектоскопия, т.е. контроль качества продукции путем просвечивания ее гамма-лучами, источником которых служит изотоп кобальт-60. Такой метод контроля позволяет с помощью сравнительно недорогой и ком пактной аппаратуры легко выявлять трещины, поры, свищи и другие внутренние дефекты массивных отливок, сварных швов, узлов и деталей, находящихся в труднодоступных местах. В связи с тем, что гамма-лучи распространяются источником равномерно во все стороны, метод дает возможность контролировать одновременно большое число объектов, а цилиндрические изделия проверять сразу по всему периметру.

С помощью гамма-лучей удалось разрешить давно интересовавший ученых-египтологов вопрос о маске фараона Тутанхамона. Одни утверждали, что она сделана из целого куска золота, другие считали, что ее собрали из отдельных частей. Решено было прибегнуть к помощи кобальтовой пушки - специального устройства, “заряженного” изотопом кобальта. Оказалось, маска действительно состоит из нескольких деталей, но настолько тщательно подогнанных одна к другой, что заметить линии стыка было совершенно невозможно.

Радиоактивный кобальт используют для контроля и регулирования уровня расплавленного металла в плавильных печах, уровня шихтовых материалов в домнах и бункерах, для поддержания уровня жидкой стали в кристаллизаторе установок непрерывной разливки.

Прибор, называемый гамма-толщиномером, быстро и с большой степенью точности определяет толщину обшивки судовых корпусов, стенок труб, паровых котлов и других изделий, когда к их внутренней поверхности невозможно подобраться и поэтому обычные приборы оказываются бессильны.

Для изучения технологических процессов и исследования условий службы различного оборудования широкое применение находят так называемые “меченые атомы”, т. е. радиоактивные изотопы ряда элементов, в том числе и кобальта.

Радиоактивный кобальт трудится и на сельскохозяйственной ниве, где его применяют для изучения влажности почв, для определения запасов воды в снежном покрове, для предпосевного облучения семян и других целей.

Совсем недавно интересное открытие сделали французские ученые. Они установили, что радиоактивный кобальт может с успехом служить... приманкой для молний. При небольшой добавке изотопа в стержень громоотвода воздух вокруг него в результате гамма-излучения ионизируется в значительных объемах. Грозовые разряды, возникающие в атмосфере, притягиваются, словно магнитом, к радиоактивному громоотводу. Эта новинка помогает “собирать” молнии в радиусе нескольких сот метров.

В заключение скажем еще об одной, пожалуй, самой важной профессии радиоактивного кобальта. Он оказался надежным союзником врачей в их борьбе за жизнь людей. Крупицы изотопа кобальт-60, помещенные в медицинские “пушки”, не причиняя вреда организму человека, бомбардируют гамма-лучами внутренние злокачественные опухоли, губительно влияя на быстро размножающиеся больные клетки, приостанавливая их деятельность и тем самым ликвидируя очаги страшной болезни.

В подземных хранилищах Всесоюзного объединения “Изотоп” находятся десятки контейнеров - больших и маленьких. В них - радиоактивный кобальт, стронций, цезий и другие источники ядерных излучений. Приходит время, и они отправляются в больницы и клиники, на предприятия и в научно-исследовательские институты - туда, где нужен сегодня мирный атом.

Назад

Hosted by uCoz